IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

The effect of the spin-orbit interaction on the electronic structure of magnetic materials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys.: Condens. Matter 3 5131
(http://iopscience.iop.org/0953-8984/3/27/006)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 11/05/2010 at 12:19

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/27
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

3. Phys.: Condens. Matter 3 (1991) 5131-5141. Printed in the UK

The effect of the spin—orbit interaction on the electronic
structure of magnetic materials

B I Min and Y-R. Jang

Department of Physics and Basic Science Research Institute,
Pohang Institute of Science and Technology, Pohang 790-600, Korea

Received 13 September 1990, in final form 7 March 1991

Abstract. In order to investigate the effect of the spin—orbit interaction on strong magnetism,
we have developed a method of electronic structure calculation which includes the spin-
orbit interaction in an approximate way into the semi-relativistic LMTO Hamiltonjan, In this
way both the spin—orbit interaction and the magnetic exchange—correlation interaction are
taken into account simultaneously in the self-consistent variational step. For a systematic
study of the effect of spin—orbit interaction on the electronic structures, we have applied this
method to magnetic materials including transition metals such as Fe, Co and Ni and light
rare-earth metals from Ce to Gd. Orbital polarizations and the spectroscopic splitting g-
factors for these materials are determined and compared with previous theoretical and
experimental results.

1. Introduction

For the last decade, extensive studies of the electronic structure of f-electron materials,
rare earths and actinides, have been carried out in the framework of self-consistent
density functional band-structure calculations. In f-electron materials, it is well known
that relativistic effects, especially the spin—orbit interaction, become important owing
to their large atomic number. On the other hand, magnetic exchange—correlation inter-
actions are also significant because of the large Coulomb correlation interaction of the
felectrons. This fact is revealed in figure 1 which compares the magnitudes of the spin—
orbit and the magnetic exchange splittings of 4f-core levels in rare-earth metais [1].
Although the magnetic exchange splittings dominate in elements with a nearly half-filled
f shell, the magnitudes of the spin—orbit splittings are also sizeable in the whole series.
Therefore both effects should be taken into account properly in describing the band
nature of felectrons. A fully relativistic density functional Dirac equation with a periodic
potential should be solved. However, one faces an immediate difficulty because spin is
not a good quantum number in the relativistic Dirac theory.

Much progress has been made by several groups in developing formalisms for the
relativistic extension of the spin-density functional theory [2]. Suggested theories are
based on the Hohenberg-Kohn theorem and accordingly the exchange-correlation
potential depends not only on the charge density but also on the current density.
However, not many practical calculations have been reported because applying this
theory to an extended system is very complicated. Quite a few applications have been
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Figure 1. The magnitudes of the exchange—correlation energy splitting A, (O) and the spin-
orbit enerpy splitting &,, {A) of 4f levels in the rare-earth series.
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reported. Among those, Ackermann et af {3] applied the effective single-particle Dirac
formalism for solids to the band structures of the ferromagnetic Fe and Gd metals but
their calculations were not self-consistent and no ground-state properties were studied.
More recently, Krutzen and Springelkamp [4] performed self-consistent calculations for
ferromagneticNi and Gd employing the spin-polarized relativisticaugmented-spherical-
wave (ASW) band method. Ebert ef al [5] presented fully relativistic calculational results
for the magnetic moments and hyperfine fields of the ferromagnetic Fe, Co and Ni using
the multiple-scattering version of the Green function method. Jansen [6] and Daalderop
et al [7] discussed the crystalline magnetic anisotropy using the relativistic density
functional theory.

Conventional electronic band-structure calculations have often emploved a semi-
relativistic approximation to the fully relativistic Dirac equation which retains the mass—
velocity term and Darwin term but not the spin—orbit interaction. It is designed to
separate spin-mixing interactions and thus to assume that the spin s still 2 good quantum
number. Therefore approximate pure-spin-basis functions can be used in the same way
as in non-relativistic spin-polarized calculations and magnetic exchange—correlation
effects can be adequately treated.

In order to describe simultanecusly the effects of the spin—orbit interaction and the
magnetic exchange—correlation interaction, we attempt in this paper a straightfoward
extension of the approximate pure-spin-basis formalism of MacDonald er af {8]. We
have generalized the semi-relativistic linearized muffin-tin orbital (LMTO) band method
toinclude the spin—orbit interaction, using self-consistent charge densities constructedin
the local spin-density approximation. Both semi-relativistic and spin—orbit Hamiltonian
matrix elements are constructed simultaneously using the spin basis sets obtained in the
self-consistent iterations. The approximation that we have used in this paper is similar
to those used by Brooks and Kelly [9], Sticht and Kiibler [10], Norman and Koelling {11]
and Fritsche ef af [12]. We use the 1MTO band method. Brooks and Kelly also used the
LMTO method to calculate the orbital moment contribution to 5f-band magnetism while
Sticht and Kiibler used the Asw method to determine the electronic structure of Gd.
Norman and Koelling used the linearized augmented-plane-wave (LAPW) method to
investigate the antiferromagnetic properties of NpSn;, and Fritsche et af used the linear
rigorous cellular method to calculate the electronic structures of Fe, Ni and Pd. The
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 main difference of our method is that, for the construction of Hamiltonian matrix
elements, we use the spin-dependent radial basis functions which are determined by the
self-consistent spin-dependent radial equations, whereas previous methods have used
the paramagnetic radial functions. Daalderop et a/ [7] and Erikssen et a/ [13] reported,
more recently, self-consistent LMTO band results employing schemes similar to ours.
Eriksson et a/ determined the orbital magnetic moments in transition metals Fe, Co
and Ni and in an actinide system NpOs,. Daalderop et al carried out first-principle
calculations of magnetocrystalline anisotropy energies in Fe, Co and Ni.

By means of this procedure, we have investigated the effect of the spin—orbit inter-
action on the electronic structures of transition metals such as Fe, Co and Ni, and also
of the light rare-earth metals Ce to Gd. Orbital contributions to the magnetic moments
and the spectroscopic splitting g-factors, both of which originate from the spin—orbit
interaction, are determined. In section 2 the computational details that we have used
are presented. In section 3, results and discussions are presented and a summary is given
in section 4.

2. Computaticnal details
The single-particle Dirac equation to be solved in the solid is
H|W;(k)) = [cap + (B — 1)mc® + V()] 1¥;(R)) = &,(k) [W,(k)) (1)

where a and B are Dirac matrices and |¥,(k)}is a Bloch function which is four-component
spinor, and j and & are the band index and the k-vector, respectively, inside Brillouin
zone. Energy is measured relative to the rest mass energy. Now the Bloch function
|% {k)} is expanded with the LMTO basis |®(k, L, 5)):

9,k = S Ck, L, 5) |00k, L, 5)) @)
LS

where

|®(k, L, s)) = %‘. oL, sH Moy (k,5) + (L, ) Qpp (k9] (3)

Here L = (I, m) stands for angular momentum and magnetic quantum numbers and s
for a spinindex. I and £} are matrices which are determined for a given k-vector by the
crystal structure and the boundary condition at the atomic sphere. |@(L,s)) and its
energy derivative (L, )} are given by the solutions P,(r), Q,(r) of the j-weighted semi-
relativistic radial Dirac equation and their energy derivatives with a spherical potential
V,(r) inside the atomic sphere [14]. Note that the spin and orbital wavefunctions are
separated in |@(L, s)} and |¢(L, 5)}.

Following MacDonald et a/ [8], it is easily verified that |g(L, s)) and |@(L, 5)) satisfy
the following equations if the terms of order up to 1/¢? are retained:

H|p(L, 5) = ex|@(L, 8)) + HL|@(L, 5)) (4)
H|¢(L, s)) = e |@(L, )} + |@(L, 8)) + HiolG(L, 5)) )
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where
L. SYm s
HY (L, $)) = [1/2M3()e2](1/0) [dVLr)/dr [Py ()/r] [ 0 " ] ©6)
: L-SY %,
HLIG(L,5)) = [1/2M0) 1N AV B | 0 "] @
and
My () = m + (1/2¢%) [ = V() (8)

Here H,denotes a Hamiltonian inside the atomic sphere and H, a spin—orbit interaction
operator. g, is the energy parameter employed in the linearized band methods and , is
a two-component spinor.

With the LMTO basis |®(k, L, 5)}, the standard secular equation of the form

HC = £8C @)
is obtained. The Hamiltonian and overlap matrices H and S are expressed as
Hygps = (@K, L', s)H| Pk, L, s)) = (@ |[H}|D) b,y + (P|H,o|D) (10)
and

Spgrs = Sibss = [ I+ 7 (G(L", 5)|g(L", s))R)S55 (11
where

(DIHR|D) = " ep L+ TR + Q¥ e (G(L7, )G, HR (12)

(O]H,,|®) = I*EZH + M*EZQ + Q7 E301 + 07 £20 (13)
EZ = (p(I",m,,sNHLlp(!", my, 5)) (14)
EZ = (¢(I",my, ") HY l@(1", my, 5)) (15)
£ = (¢(I", my, s} HL|@(!", my, 5)) (16)

where H®R and S5F denote the semi-relativistic representations of the Hamiltonian and
overlap matrices, Matrix indices are omitted in the above equations.

Now the spin—orbit interaction is included in the total Hamiltonian and thus it can
be treated simultanecusly with the spin polarization in the self-consistent iteration
procedure. The inclusion of spin—orbit interaction doubles the size of the H and 8
matrices in the secular equation because H and $ are no longer block diagonal in spin
components. The spin-up potential is used for the upper diagonal block and the spin-
down potential for the lower diagonal block, whereas an averaged potential of the two
is used for the off-diagonal block in calculating the above matrix elements. In fact,
Daalderop et af [7] found that it does not make any significant difference whether one
uses the spin-up or spin-down potentials or their average in constructing the matrix
elements. We can solve the LMTO eigenvalue equation (9) by a standard diagonalization
numerical technique to get the eigenvalues (k) and the eigenvectors C(k, L, 5) at any
given k-vector,
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Hence
[%; (k) = % C,(k, L,s)|®(k, L, s))
= S [A;k, L, )le(L, ) + By(k, L, )lg(L, )] a7
Ls

Here A and B are defined by multiplications of CIT and C€}, respectively. From this, we
can obtain the angular momentum-projected density of states (D0S):

N(g) = § 8(e ~ g;(k)) = § (e — g;(k)) (W,(K) [, (k))

= % 6(€ - gj(k)) %: [IA;(k: L,S)]z + |B,(k, L: S)|2 (‘P(L’S) l@(L, S))]

=2 Ny () (18)
Ls
where
Ny(e) = %6(5 — g;(I) [|[4;(k, L, s)* + |By(k, L, s)|* {@(L, 5) |§(L, s))). 19
Spin and orbital magnetic moments are now derived as follows:
Eg
My=22s f Npn(£) ds (20)
Ims
Ef
My = m f Nuole) de. @1)
Ims

The von Barth—Hedin [15]interpolation formula is used for the exchange—correlation
potential and the tetrahedron scheme for the Brillouin zone integrations is utilized.
Band-structure calculations are performed over 80 k-points in the irreducible Brillouin
zone.

3. Results and discussions

3.1. Transition metal

In the case when 3d transition-metal-free ions are in an insulating solid, it is well
known that the crystal-field splitting, which is much larger than the spin-orbit coupling,
quenches the orbital angular momentum. In other words, the mean value of the angular
momentum and the associated orbital magnetic moment vanish. Hence the existence of
the orbital magnetic moment reflects a measure of the spin—orbit interaction effect.
We have investigated orbital polarizations in the magnetic transition metals Fe, Co
and Ni, stemming from the spin—orbit interaction. Spin-polarized calculations with and
without the spin—orbit interaction considered are performed on BcC and rCC Fe, Hep Co
and FcC Ni. The Bcc Fe is called the a-phase of iron which is the ground state and
ferromagnetic. The Fcc Fe is called y-Fe which is a high-temperature phase and anti-
ferromagnetic. Both HCp Co and Fcc Ni are ground-state phases and ferromagnetic.
Crystalline magnetic anisotropy caused by the coupling of the direction of the spin
magnetic moment and the orbital magnetic moment reduces the symmetry of the system.
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Figure 2. Spin-polarized Dos of uee Co (a2) without and (b) with the spin-orbit interaction
included. The upper parts of the figures correspond to the spin-up band, and the lower parts
correspond to the spin-down band,

The reduction in the symmetry gives rise to the anisotropy in the band structure along
the formerly equivalent symmetry directions in the Brillouin zone. Implication from the
detailed study by Daalderop et al [7], however, is that the effects of the symmetry
reduction and the associated band-structure anisotropy on the magnitude of spin or
orbital polarization are minor, although they can be crucial for the determination of the
electronic properties near the Fermi level, such as the Fermi surface geometry. Hence,
in the present study, we have not assumed any specific spin direction and kept the original
crystal symmetry of the system in the band structure calculations with the spin—orbit
interaction included.

Figure 2 displays the pos of HCp Co which are calculated both with and without the
spin-orbit interaction included. The overall shape of pOS calculated with the spin—orbit
interaction is essentially identical with the semi-relativistic counterparts except for
more split features seen in the states which is mostly d band-like. The DOss at E are
12.3 states Ryd™" and 12.6 states Ryd™! for the cases with and without the spin-orbit
interaction, respectively. The split features are due to hybridizations between spin-up
and spin-down bands which remove most of the band intersections. Both calculations
yvield almost the same values of the spin magnetic moment, 1.62ug. The orbital magnetic
moment mostly coming from the 3d-band orbital polarization is estimated to be 0.10ug.

The orbital contributions to magnetic moment for other materials are provided
in table 1. Band-structure calculations are performed near the experimental lattice
constants, Rwg = 2.65 for Fe, Ryg = 2.62 for Co and Ryg = 2.60 for Ni (Rys is the
Wigner-Seitz sphere radius). Note that the orbital magnetic moments are small, which
are less than 10% of spin magnetic moments, but not negligible in these metals. Our
results for Bcc Fe, Co and Ni are in a good agreement with the previous results [7, 13,
16]. The magnitude of the orbital magnetic moment in Co is estimated to be the largest.
As the spin—orbit interaction is introduced, the spin polarization is slightly reduced in
BCC and Foc Fe (0.01ug) while it slightly increases in Co (0.01u5) and Ni (0.03uz). The
magnitude of the orbital magnetic moment in antiferromagnetic FCC Fe is twice that in
ferromagnetic Bcc Fe (0.06 versus 0.03). The spin magnetic moment and the exchange
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Table 1. Calculated spin magnetic moments M., and orbital magnetic moments M., and the
spectroscopic splitting g-factors for Fe, Co and Ni together with the previous results and
experimental values: g', Qur calculated value; g, value from [12]; g3, value from [17]; g°,
value from [4]; 2°, value from [7]; g%(exp), experimental value from [18].

Msp Murb

(us)  (ue) g & g g g gexp)
a-Fe 221 003 203 203 205 204 2.091
yFe 172 006 2.07
Co 1.6 010 212 211 2187

MNi 063 006 219 2317 214 215 217 2183

Table 2. Spin magnetic moments M, and orbital magnetic moments M, for the ferro-
magnetic (F) and antiferromagnetic (AF) phases of poc and Foc Fe.

M, My

(#s) (z)

BccFe F{a-Fe) 2.21 0.03
AF 1.75 0.05

rcc Fe F 2.41 0.08
AF (y-Fe) 1.72 0.06

splitting of the 3d band in antiferromagnetic Fe become reduced from those in ferro-
magnetic Fe. Generally the spin-up band yields a negative contribution to the orbital
magnetic moment whereas the spin-down band yields a positive contribution [13]. Hence
the effective shift of the Fermi level due to the reduced exchange splitting induces a
change in the orbital magnetic moment, which is balanced between the positive and
negative contributions from the partially filled spin-down band and the almost filled
spin-up band, respectively. The real situation strongly depends on the detailed band
structure of the system. Table 2, which provides the spin and orbital magnetic moments
for both ferromagnetic and antiferromagnetic phases of BcC and Fcc Fe, indicates that
there is no simple correlation between the magnitudes of the spin and orbital magnetic
moment. For FCC Fe the ferromagnetic phase has an even larger orbital magnetic
moment thap the antiferromagnetic phase, although the spin magnetic morment of the
ferromagnetic phase is larger. The real shapes of the band structure and the pos, which
depend on both the crystal structure and the magnetic phase, are crucial factors for the
size of the orbital magnetic moment,

With spin and orbital magnetic moments, the g-factor can be determined. There are
two kinds of g-factor: the spectroscopic splitting factor g and the magnetomechanical
ratio g’. The spectroscopic splitting g-factor is given by the ratio of the total magnetic
moment to the spin angular momentum and the magnetomechanical ratio g’ is given by
the ratio of the total magnetic moment to the total angular momentum. The mag-
netomechanical ratio g’ is related to the Landé g-factor of free ions with a partially filled
shell. If we consider the components of the vector quantities in the direction of the
magnetization {z direction), they are expressed as [17, 18]

g = @m/e)({MI/(S.)) = 2AMy + Mo} /My (22)
g, = (zm/e) ((Mz )/(Sz + Lz)) = 2(*,Msp + Morh)/(Msp + 2Morb)' (23)
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When the orbital magnetic moment is zero, both g-factors become 2 as expected.
The spectroscopic splitting g-factor can be measured directly from the ferromagnetic
magnetic resonance.

There have been quite a few attempts to calculate the g-factors. Among those, Singh
et al [17} and Fritsche et al [12] computed g-factors for Fe and Ni using the tight-binding
method and the linear rigorous cellular band method, respectively. More recently,
Krutzen and Springelkamp [4] reported the g-factor for Ni using the spin-polarized
relativistic Asw band method and Daalerop et al [7] reported g-factors for Fe, Co and Ni
using the LMTO band method, The spectroscopic splitting g-factors that we obtained are
also given in table 1. For comparison, previously reported results and experimental
values are presented together. Our results are close to the previous data, especially to
those of Daalerop et al [7]. The agreement between calculated and experimental values
is good for Ni but somewhat poor for Fe and Co. Calculated values are about 3% less
than the experimental values in the cases of Fe and Co.

3.2. Rare-earth metals

In order to investigate the systematic behaviour of f-orbital polarizations for an increas-
ing number of f electrons, spin-polarized calculations with and without the spin—orbit
interaction taken into account are performed on some rare-earth metals, We consider
a series of rare-earth metals from Ce to Gd except for Pm which is radioactive and so no
structural data are known. The f electrons in rare-carth metals are rather localized and
thus caution is needed in applying the band theory to these partially filled f-shell
materials.

a-Ce, which is the ground-state phase at normal pressure, has a FCC structure and
behaves as an enhanced Pauli paramagnetism. With increasing temperature,Fcc y-Ce
becomes more stable, with a larger lattice constant and a localized magnetic moment.
Prand Nd have abHCPstructure, Sm hasa typical and complicated Sm-type structure and
Eu has a simple BccC structure. These four elements have rather complicated magnetic
structures [19]. The ground state Gd has a HCP structure and is ferromagnetic. In this
study, FCC structures are assumed for Pr, Nd and Sm, and ferromagnetic structures are
assumed for all. Band calculations are performed at the experimental [attice constant
for Pr to GGd, and for Ce the lattice constant of the y-phase is used.

Figure 3 provides values of the spin and orbital magnetic moments for rare-earth
metals considered. Most of the orbital magnetic moments come from the orbital polar-
ization of the 4f band, and the polarizations of the other bands are very small. It is found
that the sign of the spin and orbital moments is opposite for most of them and so the g-
factors are less than 2 except for Gd. This is consistent with Hund’s third rule which
applies to the free rare-earth ions with less than half-filled £ shells. More interestingly,
a large cancellation occurs between spin and orbital magnetic moments in the light
lanthanides Ce, Pr and Nd. On the other hand, the orbital polarizations in Eu and
Gd, both of which have a nearly half-filled {f band, are much smaller than the spin
polarizations. This feature in the 4f band is in contrast with the case of the 5f-band
actinides. The orbital magnetic moment of Am, which has a configuration isoelectronic
with Eu 5f77s?, is rather large and is estimated to be —1.12up with a spin magnetic
moment of 6.50ug [20]. The difference is attributed to the more delocalized nature of
the 5f band. As the spin—orbit interaction is introduced, the DOS at Ep and the total
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Figure 3. Spin magnetic moments M,, (O) and orbital magnetic moments M., (A) of the
rare-earth series,

energies decrease and spin polarizations are slightly reduced compared with the semi-
relativistic values in most cases. Euis an exception in that the spin polarization increases
from 7.30uy to 7.40up as the spin—orbit interaction is introduced.

Direct comparison of the calculated results with experiments is not appropriate
because the real crystal structures and magnetic structures are different from those
assumed in thisstudy except for Gd. Furthermore, sufficient data for magnetic properties
are not available for the light rare-earth metals owing to the difficult sample preparation
and their inherent antiferromagnetic structures. As for Gd, our estimated values of the
magnetic moment, 7.68ug (7.60up from the spin and 0.08up from the orbital magnetic
moment), and the g-factor, 2.02 in Gd are close to the experimental values of 7.63ug
and 2.0 = 0.02, respectively. A similar calculation for ferromagnetic Gd was reported
by Sticht and Kibler [10] and Krutzen and Springelkamp [4]. The shape of the Dos
obtained with the spin—orbitinteractionincluded is essentially identical with their results.
Different from other materials, the DOs at Er increases as the spin—orbit interaction is
introduced from 3.3 to 4.1 states eV~!. Our value of the orbital magnetic moment,
0.0844g, is less than half the value of 0.25ug obtained by Sticht and Kiibler. We think that
this discrepancy is attributed to the different exchange—correlation functionals and the
different perturbation methods empioyed by Sticht and Kiibler. On the other hand, our
value is close to the value of 0.084u; obtained by Krutzen and Springelkamp who used
the same exchange—correlational functionals as ours (the von Barth~Hedin form). They
reported that the spin and orbital magnetic moments are quite sensitive to the explicit
form of the exchange—correlation functionals.

The behaviour seen in Eu and Gd metals, which possess rather small orbital polar-
izations, seems to be consistent with Hund’s rule which applies to the free ions with a
partially filled shell. The behaviour in light rare-earth metals, however, does not seem
to follow Hund’s rule. The magnitudes of the orbital moments are too small compared
with the values of free ions anticipated from Hund’s rule. Whether this fact is due to
shortcomings of our approximation method or due to the different electronic structure
between metals and free ions should be investigated further theoretically and also
experimentally.

One always faces difficulties in dealing with the band structure of f-electron materials
using the local-density approximation band calculations. This is due to the localized
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nature of f electrons as well as to the subtle interplay between the spin polarization
and the spin-orbit interaction. Jansen [21] argued that the orbital contribution is an
important term in the total energy functionals. The orbital magnetic moment is caused
by the spin—orbit interaction and also by the many-body correlation effects. He argued
that the latter contribution is probably more important. Presumably, full refativistic
spin-polarized band calculations with self-energy corrections which include the orbital
moment contributions will provide a solution. An attempt has recently been made by
Eriksson et al [22] to take into account the orbital moment correction in light lanthanides.
Their suggestion is to incorporate Hund’s second rule, which is not well treated in our
perturbation method, to the evaluation of f-band eigenvalues using the Hartree—Fock
theory. In this way, they have got much larger orbital polarizations for light lanthanides
seemingly consistent with Hund’s rule for free ions. This approach provides instructive
directions towards the more general methods mentioned above; however, this is still an
ad hoc approximation which adopts only the energy ievel shifts rather than the more
accurate but unknown functional and the corresponding potential.

4. Summary

We have investigated the effects of the spin—orbit interaction on the electronicstructures
of magnetic materials—transition metals and rare-earth metals. A relativistic version of
the LMTO band method is utilized which takes into account the spin—orbit interaction
and the magnetic exchange—correlation interaction simultaneously.

For the transition metals Fe, Co and Ni, we have determined orbital polarizations
and spectroscopic splitting g-factors both of which originate from the spin—orbit inter-
action. It is found that the 3d-band orbital magnetic moments in these materials are
small but not negligible. The agreement between calculated and experimental values of
g-factors is fairly good.

We have also studied the systematic behaviour of the orbital polarizations in light
rare-earth metals as increasing the number of f electrons. It is found that in Ce, Pr and
Nd the orbital magnetic moments pearly cancel the spin magnetic moments whereas in
Eu and Gd the orbital magnetic moments are very small. The calculated values of the
magnetic moment and the g-factor in Gd are in close agreement with experimental
values.
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